Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes.

نویسندگان

  • B W Bogan
  • R T Lamar
چکیده

The ability of Phanerochaete laevis HHB-1625 to transform polycyclic aromatic hydrocarbons (PAHs) in liquid culture was studied in relation to its complement of extracellular ligninolytic enzymes. In nitrogen-limited liquid medium, P. laevis produced high levels of manganese peroxidase (MnP). MnP activity was strongly regulated by the amount of Mn2+ in the culture medium, as has been previously shown for several other white rot species. Low levels of laccase were also detected. No lignin peroxidase (LiP) was found in the culture medium, either by spectrophotometric assay or by Western blotting (immunoblotting). Despite the apparent reliance of the strain primarily on MnP, liquid cultures of P. laevis were capable of extensive transformation of anthracene, phenanthrene, benz[a]anthracene, and benzo[a]pyrene. Crude extracellular peroxidases from P. laevis transformed all of the above PAHs, either in MnP-Mn2+ reactions or in MnP-based lipid peroxidation systems. In contrast to previously published studies with Phanerochaete chrysosporium, metabolism of each of the four PAHs yielded predominantly polar products, with no significant accumulation of quinones. Further studies with benz[a]anthracene and its 7,12-dione indicated that only small amounts of quinone products were ever present in P. laevis cultures and that quinone intermediates of PAH metabolism were degraded faster and more extensively by P. laevis than by P. chrysosporium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the ca...

متن کامل

Ring fission of anthracene by a eukaryote.

Ligninolytic fungi are unique among eukaryotes in their ability to degrade polycyclic aromatic hydrocarbons (PAHs), but the mechanism for this process is unknown. Although certain PAHs are oxidized in vitro by the fungal lignin peroxidases (LiPs) that catalyze ligninolysis, it has never been shown that LiPs initiate PAH degradation in vivo. To address these problems, the metabolism of anthracen...

متن کامل

Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi.

Ligninolytic fungi accomplish the partial degradation of numerous aromatic organopollutants. Their ability to degrade polycyclic aromatic hydrocarbons (PAHs) is particularly interesting because eukaryotes were previously considered to be unable to cleave fused-ring aromatics. Recent results indicate that extracellular peroxidases of these fungi are responsible for the initial oxidation of PAHs....

متن کامل

Draft Whole-Genome Sequence of Sphingobium sp. 22B, a Polycyclic Aromatic Hydrocarbon–Degrading Bacterium from Semiarid Patagonia, Argentina

Sphingobium sp. 22B is a polycyclic aromatic hydrocarbon-degrading strain isolated from Patagonia, Argentina, with capabilities to withstand the environmental factors of that semiarid region. The draft genome shows the presence of genes related with responses to carbon starvation and drying environmental conditions.

متن کامل

Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil

Ligninolytic white rot fungus, Phanerochaete chrysosporium, isolated from soil sample of petroleum refinery, was used for degradation of five polycyclic aromatic hydrocarbons (PAHs: acenaphthene, anthracene, phenanthrene, fluoranthene and pyrene), simultaneously and individually in sterile and unsterile soil. For maximum biodegradation, after 42 days of incubation, optimum conditions were pH 7....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 5  شماره 

صفحات  -

تاریخ انتشار 1996